
Simple derivations of generalized linear and nonlinear Langevin equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 1289

(http://iopscience.iop.org/0301-0015/6/9/004)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/9
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 6, September 1973. Printed in Great Britain. 0 1973 
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Abstract. With the aid of a single operator identity, the derivation of the Mori generalized 
linear Langevin equation is simplified and a new generalized nonlinear Langevin equation 
is obtained. The flexibility of the method is stressed which allows us to derive various 
generalized nonlinear Langevin equations that can be used as bases for devising approxi- 
mation schemes such as the mode coupling scheme. 

1. Introduction 

In recent years formally exact generalized Langevin equations (Mori 1965, Kubo 1966) 
are proving to provide useful starting points in various problems of non-equilibrium 
statistical mechanics. Notable examples are the memory function approaches to 
liquid dynamics (Akcasu and Duderstadt 1969, Mazenko 1971) and the study of non- 
equilibrium critical phenomena (Kawasaki 1972). In view of the importance of these 
generalized Langevin equations it is useful to simplify and generalize derivations of 
these equations. We accomplish this with the aid of an operator identity (2.2) below. 
The merits of our approach are its simplicity and greater flexibility. We first derive 
the generic Langevin equation (2.9), from which both linear and nonlinear generalized 
Langevin equations of various types are readily obtained by the suitable choice of 
projection operators (see $0 3 and 4). Fluctuations from a non-equilibrium steady state 
are also treated in $ 5. 

2. Generic form of Langevin equation 

In tHis section we present a derivation of the Langevin equation in a rather general form 
emphasizing its essential mathematical structure. Consider a (classical or quantum- 
mechanical) dynamical variable X ,  whose time development can be described by a 
classical or quantum-mechanical Liouville operator 9 by$ 

(2.1) X ,  = 

where X is equal to X ,  at t = 0. We need another operator Yo which will be specified 
t Now at Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan. 
$ In fact in quantum-mechanical cases 9, Yo and 9 in this section are ‘super operators’ that map a quantum- 
mechanical operator into another quantum-mechanical operator. 

1289 



1290 K Kawasaki 

later and is closely related to 9. The first step in our derivation is to note the following 
operator identity : 

This identity is very easily obtained if,we note that the integrand in the above expression 
is also written as 

i ( 9  -Yo). (2.3) -- d e i ( t - s ) 9  e is(y-ao)  

ds 

Note that this identity is different from other operator identities used in a similar 
context such as equation (3.8) of Fukui and Morita (1971). 

Let us now suppose that there is an inner product (X, Y) of two arbitrary dynamical 
variables X and Y. In this section we do not need a precise definition of such inner 
products although these will be explicitly defined in the examples later. 

Physically speaking, a generalized Langevin equation expresses the fact that a 
macroscopic system exhibits slowly varying gross behaviour described by a set of gross 
variables A , ,  A , ,  . . . superimposed with rapid random fluctuating motions (Green 
1952, Mori 1965, Kubo 1966). An arbitrary dynamical variable X is then separated 
into a part that is associated with the gross variables { A )  and the rest?. This we accom- 
plish with the aid of the two sets of suitably defined functions of { A } ,  q5,({A}) and 
$,,({A}), n = 1 , 2 , .  , . , which are orthonormal in the following sense: 

(4m3 $ n )  = ‘mn. (2.4) 

We then introduce the projection operator B by 

The condition (2.4) then ensures the idempotent nature of 9. The aforementioned 
separation of X is then 

x = B X + 9 X  (2.6) 

with 2 E 1-9 where 2 X  represents the rapid randomly fluctuating part of X. The 
choice of gross variables has been discussed (eg Green 1952) and will not be touched 
here. The choice of the orthonormal sets of functions {4,,} and {$,,I remains unspecified 
in this section. In particular we do not necessarily require these sets to be complete in 
the function space of { A } .  The choice is dictated in each circumstance by what we mant 
to regard as random forces. We also introduce the adjoints to 9 and B denoted by 
2 and $ as follows : 

( i u x ,  Y )  = - (x, iB Y )  

(BX, Y) = (X,$Y) 

where X and Yare arbitrary dynamical variables. 

t This is a rather loose statement. The precise meaning of this requires specification of a projection operator 
also. See the following sections. 
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(2.10) 

(2.1 1) 

Here the second term of (2.9) has been transformed using (2.2) and (2.Q and we have 
used the following property satisfied by the Liouville operator : 

9 X Y  = (9X)Y+X(YY).  (2.12) 

The equation (2.9) is the prototype of the generalized Langevin equation. Here the 
first term on the right-hand side represents the change of X, in time which follows 
adiabatically the changes in { A t ) .  The second term expresses the damping of this 
adiabatic motion by friction which contains memory effects. The last term is the random 
force acting upon the dynamical variable X. Of course this interpretation is always 
contingent on a particular separation of dynamical variables (2.6), that is, on the 
particular choice of { A } ,  {$,,} and {4n} .  Note that the random forces satisfy the following 
orthogonality conditions: 

(2.13) 

(2.14) 

The random forces are not necessarily orthogonal to functions of { A }  which are outside 
the function space spanned by { 4 }  and {$}. This characterizes how ‘random’ in fact 
fx and Tn are. 

3. Generalized linear Langevin equation 

We now derive as a special case of (2.9) the generalized linear Langevin equation for the 
quantum-mechanical gross variable Ai first obtained by Mori (1965). Here we define 
the inner product to be the Kubo canonical correlation (Kubo 1966), 

where /? = l/k,IT; 2 is the partition function, and H is the system hamiltonian. Y is 
defined by 

1 
i Y X  = --[X, HI (3.2) h 

and is hence self-adjoint: 9 = 9. We choose the set of gross variables { A }  to be 
orthogonal to each other, 

(Ai,  Aj) = xisij  (3.3) 
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and 4 and $ are chosen to be 

(b i ( {A) )  = p 2 A i  

$ , ( { A > )  = X;1’2Ai 

where the equilibrium averages A i  are taken to be zero. 9 is then identical to the 
projection operator of Mori (1965). Hence, choosing X ,  to be Ai(t) ei‘”A,, (2.9) 
reduces to 

(3.7) 

fi(t) ei‘(1-9)” (1 - P ) i 9 A i .  (3.8) 

(3.6) is equivalent to  Mori’s generalized Langevin equation (Mori 1965). 

4. Generalized nonlinear Langevin equations 

€n the preceding section the random forces {f} are orthogonal only to the linear 
function of the gross variables { A ) .  It is now increasingly realized that this is not always 
satisfactory since the random force can then contain products of the gross variables 
which may not be really random (eg Kawasaki 1971, 1972, Zwanzig 1972). Hence the 
opposite extreme is to include all the suitably symmetrized polynomials of { A )  among 
the sets {$} and (4)t. Otherwise we use the same definitions of the Liouville operator 
and inner products as in the preceding section. We then find from (2.9) with X ,  = Ai(t) 
the exact generalized nonlinear Langevin equation where now the random forces are 
orthogonal to all the polynomials of { A }  and hence can be considered as genuinely 
random provided the set { A }  exhausts all the slowly varying dynamical variables of the 
system. 

The generalized Langevin equation assumes a rather compact form if we restrict 
ourselves to classical-mechanical cases. Here we may choose 

$ , ( { A ) )  = 4 , ( { A } )  (4.1) 
and we further require the completeness condition, 

where asterisk denotes taking the complex conjugate, and 6 ( A  - A’)  is the product of 
delta functions of all the gross variables and P, ( { A } )  is the equilibrium distribution 
function of the gross variables. With this choice of orthogonal set 9 becomes identical 
to the projection operator introduced by Zwanzig (1960). (2.9) then becomes 

t An example of such a set of polynomials is suggested by Zwanzig (1972). 
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(. . .), being the equilibrium average. In deriving (4.3) we have used (4.2) and 

which follows by noting that 

PXF({A}) = F({A})PX 

where F ( { A } )  is an arbitrary function of { A } .  
If A(t) is genuinely random, we may use the 'markovian' approximation 

q t ;  { U } )  = 2L${U})d(t) 

and obtain 
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(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

c , ( {A( t ) } )  in general contains products of { A ( t ) ) ,  and (4.1 1) can be used as a starting point 
for developing the mode-coupling theory (Kawasaki 1972). The identity (4.3) thus 
provides a generalization of the equation like (4.11) which contains memory effects 
associated with the random force fi(t) in the form of the memory kernel K:(t; { A ( t ) ) ) .  
(4.3) is the new result obtained heret although similar equations in less transparent 
forms have appeared in the literature (Kawasaki 1970, Nordholm 1972). 

5. Fluctuations from steady states 

In the preceding two sections we were concerned with fluctuations occurring in thermal 
equilibrium states. Here we show that the formalism of $ 2  is also suited to study 
fluctuations occurring in steady states. To bespecific, let us consider, following McLennan 
(1963), a system described by classical mechanics which is in a steady state maintained 
by a set of non-conservative forces Fa acting on the crth canonical coordinate of the 
system. 

The equation of motion of an arbitrary dynamical variable of the system X is then 

where zs is the Liouville operator of the system isolated from the surrounding reservoirs 

t This result was announced without derivation at the Symposium on Synergetics, Schloss Elmau, Germany, 
May 1972. 
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and p ,  is the momentum conjugate to tht  rth coordinate. F, and p ,  are taken to be real 
quantities. 

The Liouville equation for the phase-space distribution function D(x ; t )  for the 
system in contact with reservoirs is (x is the phase-space coordinate), 

a 
at 
-D(X ; t )  = - i8D(x  ; t )  

with 

(5.3) 

The steady state distribution function D,(x)  then satisfies the equation 

i$D,(x) = 0. (5.4) 
The inner product of phase functions X and Y is defined as 

(X, Y) = X(x)Y*(x)D,(x) dx. (5.5) 

Then one can readily verify that Y and 9 are both self-adjoint operators. Furthermore, 
9 satisfies the property (2.12) though 2 in general does nat. 

We can now choose I),, = 4n so that B is self-adjoint. If the set of functions {4} 
either consists of linear functions of { A }  as in (3.4) or constitutes the complete set in 
the sense of (4.2) where P,( {A})  is replaced by its equivalent in the steady state, we 
have for f,, defined by (2.11) the following : 

With these preparations we recover, for these two choices of the set {4}, the classical 
version of the Mori generalized linear Langevin equation (3.6) and the generalized 
nonlinear Langevin equation (4.3) for fluctuations from a steady state, where the 
Liouville operator and the inner product are redefined in this section and equilibrium 
averages are replaced by steady-state averages. 

6. Concluding remarks 

In the preceding three sections we considered the two extreme choices of the sets of 
orthogonal functions {4} and {I)}, One can of course consider the whole intermediate 
range of choices of {4} and {I)}. For instance, one could choose linear and quadratic 
functions of { A }  for {4} and {I)}, which then gives the starting stochastic equations of 
the mode-coupling theory in which only two mode intermediate states are allowed. 
Then the processes involving three, four,. . . mode intermediate states must come from 
random forces. The greater flexibility afforded by our approach should provide a basis 
for devising suitable approximations in various specific circumstances. 
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